APPLICATION-SPECIFIC CONSTRAINTS FOR
MULTIMEDIA PRESENTATION GENERATION

JOOST GEURTS, JACCO VAN OSSENBRUGGEN AND LYNDA HARDMAN

Centrum voor Wiskunde en Informatica (CWI) Amsterdam
Firstname{.van}.Lastname@cwi.nl

The paper describes the advantages of the use of constraint logic programming to
articulate transformation rules for multimedia presentation in combination with
efficient constraint solving techniques. It demonstrates the need for two different
types of constraints. Quantitative constraints are needed to verify whether the
final form presentation meets all the numeric constraints that are required by the
environment. Qualitative constraints are needed to facilitate high-level reasoning
and presentation encoding. While the quantitative constraints can be handled by
off-the-shelf constraint solvers, the qualitative constraints needed are specific to
the multimedia domain and need to be defined explicitly.

1 Introduction

The need for presentation adaptation to a wide variety of circumstances is
of crucial importance to current and future content providers. From a tech-
nical perspective, different devices such as mobile phones, PDAs and fully
equipped multimedia PCs should be able to convey basically the same in-
formation while exploiting their device-specific capabilities. In addition, to
maximize the user’s level of understanding, the presentation should be con-
veyed in the way most suited to the particular user. Manually authoring all
these different presentations is in principle an option, but is in practice too
costly. Generating presentations automatically is an alternative for obtaining
multiple presentations of reasonable quality which are tailored to the context
in which the presentation is played.

In order to construct a presentation, whether by a human author or a
system, a number of aspects have to be taken into account. In particular,
the “message” of the presentation has to be conveyed using selected media
items, the media items have to be arranged in some aesthetically pleasing
manner, and all this has to be presented in the screen dimensions of the
user’s device and time-limits of the user. Solutions are possible, but only
after contradictory requirements have been traded-off against one another.
Examples of such trade-offs include:

e Semantics versus aesthetics The presentation as perceived by the
user is intended to convey the message as envisaged by the author. The



message itself is conveyed through the media items included in the pre-
sentation, the temporal and spatial layout of the items and the choice
of style characteristics. These are both the means used for increasing
the aesthetic appeal of a presentation and for expressing the author’s
message. Just as for established paper-based graphic design, there is a
trade-off between using any particular technique for emphasizing either
the aesthetic appeal or the semantic content. For example, the padding
distance between the items on the screen can be varied purely for aes-
thetic reasons to improve the layout. On the other hand, padding distance
could also have a semantic purpose, for emphasizing structural relations
among items by strengthening the visual grouping in the presentation.
Determining the resulting padding distances needs to take both semantic
and aesthetic effects into account.

e Aesthetics versus resources Having established design rules for a de-
sired layout, these may prove to be insoluble for the user’s device. In
which case, some sort of compromise needs to be made in order to come
up with a feasible alternative. For example, the designer decides to place
a label above an image to provide a title and to do this throughout the
presentation for maintaining consistency. This turns out to be infeasible
because of lack of screen space. There is, however, sufficient room to po-
sition the labels consistently to one side of the image. The designer has
to make a choice as to whether the preferred position is used wherever
possible, or to use the less aesthetically pleasing position consistently.

e Semantics versus resources The message itself may also have to be
compromised by the availability or resources. Whether this is caused by
the temporal constraints of the user (the wish to view the message in as
short a time as possible) or space constraints of the device, a consequence
may be that the message itself has to be compressed. For example, by
discarding media items that would have served to illustrate a particular
concept, or even by removing the concept from those that were to be
explained.

As shown by the fundamental trade-offs of semantics, aesthetics and re-
sources, presentation generation does not lend itself readily to the traditional
divide and conquer techniques commonly used in computer science. Decisions
taken about the semantics of the presentation steer the allocation of screen
and temporal resources, while final details at the resource level (e.g. an image
that is a few pixels too wide or a video that is a tenth of a second too long)
may force the system to re-evaluate previously made semantic decisions.



The process of creating a presentation is not linear. Rather, the process
consists of going back and forth through the conceptual layers of generating
a presentation. Solutions to an aesthetic problem can trigger semantic prob-
lems and vice-versa. While a human author is faced with these difficulties
in creating an ideal presentation, the same problems are also faced when at-
tempting to capture the process in a presentation generation system. From
an implementor’s perspective, a system for creating multimedia presentations
automatically has to not only make the decisions an author would make, but
also cope with the trade-offs that have to be made when chosen solutions fail.

Our approach to creating a prototype multimedia presentation generation
system is thus to identify a number of different levels of abstraction encoun-
tered in the process of creating a multimedia presentation, and to embody
these in conceptually distinct steps in a presentation creation process. Start-
ing with a presentation-independent abstraction, specified in semantic terms,
the prototype makes selections and choices, calculating potential solutions for
providing a presentation, and finally creates a final-form presentation tailored
to the specific requirements of the user, device and network conditions. At
run-time, backtracking can take place at each step, and a number of steps are
highly intertwined.

Constraints and constraint logic programming play an important role in
a number of steps in the generation process, and it is this role which is the
focus of this paper. In particular, we show that quantitative constraints are
important for making decisions as to the feasibility of potential solutions,
and that quantitative constraints are of themselves insufficient, requiring a
higher-level constraint mechanism, which we term qualitative constraints, for
providing higher-level abstractions for processing.

The remainder of the paper is structured as follows. The following sec-
tion sets our work in the context of related work on the use of constraints in
generating multimedia presentations. We then incrementally introduce more
complex constraint solving techniques as potential solutions to deal with the
complexity issues described above. In section 4 we briefly give an overview
of our multimedia presentation generation prototype, Cuypers, and then de-
scribe in detail how quantitative and qualitative constraints have been im-
plemented. We present our conclusions and directions for future work in
section 5.

2 Related Work

Generation of synchronized multimedia presentations from higher level de-
scriptions is not novel in itself. Spatial and temporal constraints for specifying



multimedia are used, for example, in the Madeus system®. While constraints
in Madeus are primarily used to provide a high level document model with an
associated authoring interface, we focus on the use of constraints as a means of
expressing the effect of the application transformation rules on the generated
multimedia presentation.

The common architecture of a number of model-based systems for multi-
media presentations developed within the AI community resulted in the Stan-
dard Reference Model for Intelligent Multimedia Presentation Systems (SRM-
IMMPS?), and the relation between SRM-IMMPS with a previous prototype
of the system presented here has been described in 2. In addition, SRM-
IMMPS directly inspired the levels of abstraction used in our system. The
main difference is that the SRM-IMMPS model focuses on synthesizing the
media items in a way that suits the presentation, while we focus on finding
an appropriate way of presentating a given set of media items.

Our work is also closely related to the (groundbreaking) work of Elisabeth
André and Weitzman and Wittenburg. André described the use of Al plan-
ning techniques in combination with constraint solvers in her WIP and PPP
systems*. Weitzman and Wittenburg use relational grammars®, also followed
by constraint solving, to automate the articulation of the presentation process.
Our approach integrates the several processing steps into a single run time
environment so that the system can freely backtrack across the different lev-
els. Our main contribution is the use of constraint logic programming (CLP)
for the articulation of both transformation rules and constraints. This allows
high-level presentation decisions to be re-evaluated immediately as a result of
constraints that turn out to be insolvable at the lower levels (e.g. pixel level).
This is in contrast to both André’s planning and Weitzman and Wittenburg’s
grammar approaches, where the activation of the constraint solver is post-
poned until all the constraints have been generated. In addition, the use of
CLP allows us to backtrack over the different solutions within a given set of
constraints as well as backtracking over the different transformation rules that
can be applied to a single document.

3 Constraint Solving Techniques

The problem of generating multimedia presentations can be viewed from dif-
ferent perspectives using different techniques. A first step towards a solution
is the choice of a suitable platform and framework able to process the type
of information needed. We argue that constraint satisfaction techniques are
beneficial to the problem of generating multimedia because of their flexibility
and their suitability for expressing the problem at a high level.



Constraint solving is similar to other declarative approaches to the extent
that the programmer does not provide an algorithm but gives the require-
ments the solution has to conform to. How these requirements are processed
internally is not an issue for the programmer. Constraint solving focuses on
problems where there are many variables and large associated domains. It is
the task of the constraint solver to reduce the size of the domains as efficiently
as possible. For example, suppose we have two variables z € [0..5],y € [0..100]
and the constraint © > y. The values 5..100 of y will never satisfy the
constraint and can thus be eliminated from the domain. This results in:
x € [0..5],y € [0..4] which reduces the domain of y by 96 possibilities. While
this is an extremely simple example, similar techniques can be used to reduce
the domain efficiently in multimedia presentation generation, in particular
when calculating the spatio-temporal layout of the various media items.

We have been involved in developing several prototypes to explore dif-
ferent aspects of multimedia presentation generation. The prototypes have
been developed in an incremental way and each prototype can be regarded as
a reaction to the lessons learned during the development of its predecessor.
While they all use some form of constraint satisfaction, they each approach
the problem differently. Below, we give a short overview of the prototypes
developed, since they provide key insights in both the practical aspects of
constraint solving and the more theoretical aspects of multimedia presenta-
tion generation.

3.1 Constraint Programming

The first prototype, developed by Bailey et al.?, aimed at the automatic trans-
formation of the results of simple multimedia database queries into a multi-
media presentation encoded in SMIL. The system initially consisted of a set
of high-level transformation rules, specified in Prolog, that converted struc-
tured results from the database into SMIL presentation constructs. However,
the detailed calculation of the exact spatial coordinates of the presentation’s
visual layout and the precise synchronization requirements made it difficult
to ensure that the transformation rules remained generic and were specified
at the right level of abstraction. To address this problem, an extra layer was
added to the system. The transformation rules in Prolog no longer needed to
do the calculations, and instead needed only to generate the set of constraints
that the desired spatio-temporal layout should meet. The second layer, writ-
ten in Java, used these constraints to determine the exact coordinates of the
resulting SMIL presentation. The prototype used an off-the-shelf constraint
solver, Cassowary’, to apply different types of domain reduction rules.



The problem with this approach, however, is that it is in general not
possible to efficiently revise a constraint. Once the entire set of constraints
has been determined, the system can either solve them or not. If it cannot,
it is not known which constraint caused a failure and a complete new set of
constraints needs to be generated, in the hope that the new set will resolve the
previous problem. Only when all possible sets of constraints have been tried is
it known whether the presentation of the media items is feasible. Additionally,
the fact that the constraint generator (in Prolog) and the constraint solver (in
Java) were two separate programs made it even harder to control the revision
of constraints in a convenient way. Constraint logic programming (CLP) deals
with this type of problem.

3.2  Constraint Logic Programming

Constraint logic programming is a combination of logic programming and
constraint solving. It combines features from Prolog, such as backtracking
and unification, with the domain reduction techniques from the constraint
solver paradigm. Practically, this means that alternative constraints can be
invoked when the original one caused a failure. This is an improvement in
comparison with the previous approach, since we need only try alternatives
for constraints which caused a failure.

The next prototype was based on ECLPS®®, a true constraint logic pro-
gramming system that supports different types of domains such as integers,
reals, sets etc. In addition to its built-in ability to revise constraints, another
improvement of ECL*PS® is that the system is able to combine the process-
ing of the transformation rules and the constraints within a single execution
environment. This is not only more efficient, but also allows for a more so-
phisticated interaction between these two phases in the generation process.

Another improvement of the ECL?PS®-based prototype is the introduc-
tion of another abstraction layer for the transformation rules. In fact, when
transforming from the semantic structure of the document to a set of con-
straints, two types of decisions need to be made. First, one needs to decide
on how the semantics can best be presented. Second, one needs to decide on
how this presentation is to be represented by a set of constraints. To be able
to discriminate between these two different levels, we introduced the notion of
a communicative device®. Communicative devices are patterns of often used
multimedia presentation design, and allow the designer to choose the most
appropriate presentation pattern to convey the semantics of the document
to the user. The transformation of the communicative devices into a set of
constraints is a separate task, and is the responsibility of the programmer,



not the designer.

Despite these improvements, the new prototype suffered from a different
drawback. While multimedia presentations could be described easily by sets
of constraints that were automatically generated by the transformation rules,
for various types of processing these constraints proved to be too low level.
For example, due to the low-level specification of spatial layout in SMIL, a
solved set of constraints provides the necessary spatial information at exactly
the right level: in the form of x and y coordinates, with width and height
values. In contrast, SMIL has much higher level facilities for defining the
temporal structure of the presentation, and the flat list of numeric begin and
end times for each media item is not the most appropriate level of abstraction.
Clearly, higher-level descriptions of the temporal relations, including grouping
and hierarchical structures, are needed to deliver high quality SMIL output.

Other, perhaps more fundamental, drawbacks of the low-level nature are
related to inappropriate backtracking behavior. For example, when the do-
main of a specific coordinate has been reduced to, say [5..15], and the resulting
layout with x = 5 fails for some other reason and causes the system to back-
track, the solver might try x = 6, = 7, etc. This will, when the coordinates
are expressed in pixel units, generate a number of similar layouts that differ
by only one pixel value for a particular media item: clearly, in most cases this
is not the desired backtrack behavior. Instead of backtracking on the quan-
titative level, it is often more appropriate to backtrack on a more qualitative
level, e.g. by backtracking over the decision that A should be left of B, by
trying, for example, A above B.

While ECL!PS® has no built-in solvers for qualitative constraints such as
“left-of” or “above”, it supports the definition of application-specific domains
and constraints. These are typically called user-defined constraints.

3.3 User-Defined Constraints

The drawbacks of the use of only numerical domains and constraints in the
prototype discussed above lead to our current prototype, which implements
an extra layer of abstraction, based on qualitative constraints. Unlike the
generic numerical constraints, the qualitative constraints used are specific
to multimedia presentation applications. In ECL!PS®, qualitative, or user-
defined, constraints have no associated built-in library which specifies how to
deal with these types of constraints. Instead, the application needs to provide
the rules which the system can use to reduce the domains of the associated
variables. For example, we need a transitive rule which states that if image
A is left of image B and B is left of image C then A is left of C as well. We



also need a symmetric rule which states that if A is left of B then B is right
of A, etc.

Together, these domain reduction rules can be seen as a formalization
of the implicit “common knowledge” human authors have about spatial and
temporal relations. A complete specification of these rules, however, is not
trivial and is in fact a programming task in itself. One way of specifying
such rules is with a language that is designed for this purpose: Constraint
Handling Rules (CHR), a declarative language extension of constraint-based
systems such as ECL!PS®.

A CHR program consists of several rules, where each rule consists of a
name, head, type, guard and body. Basically there are two types of rules which
are simplification rules and propagation rules®. For example, the symmetry
relation between left and right mentioned above might be specified using a
simplification rule (<) named sym1, defined as:

% Name Head Type Guard Body

syml @ A rgt B <=> visual([A,B]) | B 1ft A.
Note the use of the guard that prevents this rule from being tried for non-
visual items (such as audio fragments). The transitive nature of the left of
relation could be specified using a propagation (=) rule named ¢ransl:
% Name Head Type Guard Body

transl @ A 1ft B, B 1ft C ==> A##B, B##C | A 1ft C.
These CHR rules can be applied as follows: suppose we have specified the
constraints “image 1 should be placed to the right of image 2” and “image 1
should be left of image 3” then initially the working set of constraints (also
called the constraint store) is:

{ imgl rgt img2, imgl lft img3 }

The CHR-rules all have a name which is only there for debugging reasons
— it is convenient to know which rule is applied when. They also have a
head, which is a constraint (or a sequence of constraints) which determines
whether a rule is applicable or not. If a constraint from the constraint store
matches a head, the rule is applied. So in our example the constraint “imgl
rgt img2” matches the head of the rule sym1. This is a simplification rule as
the < operator shows. Simplification rules replace the head by the constraint
which is defined by the body of the rule. Before this replacement can proceed,
however, the guard has to succeed. In our case the guard states that A or B
should be visual items. Since the example deals only with images, the test
will succeed and pass to the body. The body defines a new constraint and

“Strictly speaking there is a third type, called the simpagation rule which is a combination
of the first two.



replaces “A rgt B” for “B 1ft A”. So the constraint store was

{ imgl rgt img2, imgl 1ft img3 }
and after the rule syml is applied the constraint store is

{ img2 1Ift imgl, imgl 1ft img3 }
This set of constraints matches the head of rule transl which is a propagation
rule. This means that the constraint store is now extended with the new
constructed constraint from the body. After the rule transl is applied the
constraint store is updated:

{ img2 1ft img1, imgl 1ft img3, img2 Ift img3 }

Note that unlike Prolog clauses, CHR rules have no order. The next rule that
fires is determined by the CHR-compiler, and the order in which the rules
are specified does not influence the behavior of the program. If there is no
applicable rule then the constraint-processing delays until a variable in one of
the constraints changes. The rules whose head match the altered constraint
will then be re-applied.

3.4 Automatic Rule Generation

User-defined, qualitative, constraints eventually need to be mapped onto built-
in, quantitative, constraints, such as inequality (<, >) or equality (=), which
in turn will evaluate to either true or false. Since inequality constraints are
only defined for numerical values, we have to enumerate all possibilities by
means of equality constraints. In practice, the number of possibilities is of-
ten too large to allow manual enumeration, thus requiring some means of
automatic rule generation.

For example suppose we have a Boolean domain { false, true} and a con-
straint and(A, B, C) representing AA B = C. The domain and constraint are
not numeric, so we have to express the and constraint by means of equality
constraints. While A, B and C can all be either true or false, once we know C
is true we also know that A and B have to be true, etc. CHR rules to express
this could be:

and (A,B,true) ==> A=true, B=true

% other rules for the ‘‘and’’ constraint:

and(true,B,false) ==> B=false
and(A,true,false) ==> A=false
and(false,B,C) ==> C=false
and(A,false,C) ==> C=false
and(true,true,C) ==> C=true



These six rules completely define the ‘and’ constraint. This constraint uses
a binary domain and is therefore quite straightforward. In practice, domains
for multimedia generation are often larger which result in more complex rules.
For example, to fully define the transitive behavior of the 13 Allen temporal
relations'?, it turns out that almost 500 CHR rules are needed. In addi-
tion, our constraint system also needs similar rules for the spatial dimensions.
Clearly, manual specification of all these rules is not realistic.

Fortunately, the majority of these rules can be generated automatically.
In particular, we used the rule generation algorithms and tools developed by
Apt and Monfroy!'!. Since the Allen domain consists of 13 values, there are
13 x 13 = 169 combinations which reduce the domain of the third variable.
These combinations are completely defined by Allen (1°, the table in Figure
4 on page 836). The translation of this table to the corresponding CHR-rules
is done automatically by the algorithm.

Apt and Monfroy define two versions of the algorithm. The first leads to a
local consistency notion called arc consistency. A constraint is arc consistent
if every value in each domain participates in a solution. The second algorithm
leads to rule consistency (see 1! for details).

Rule consistency is a weaker notion than arc consistency. Arc consistent
rules can exclude more values which results in faster solutions. The generation
of all the arc consistent rules, however, takes about 5 days on a 500MHz PC,
and results in more than 26000 rules. In contrast, the rule consistent algorithm
generates only 498 rules in less than 6 seconds. Apart from the time it takes
the algorithm to produce all the rules (which needs to be done only once),
there is also a huge difference in the time needed to load the generated rules
during the start-up of the presentation engine. So from a practical perspective,
we choose to use the rule consistent version in our current prototype even
though, theoretically, the arc consistent version is more efficient. In future
versions of the system, when we have a more stable, continuously running
presentation engine, the increase in run-time efficiency of the arc consistent
rules might outweigh the extra overhead at start-up time.

4 Constraint Processing in Cuypers

Cuypers is our current prototype system for generating multimedia presenta-
tions. This section initially gives an overview of the system including how an
abstract semantic structure is transformed into a playable multimedia presen-
tation. It then discusses in detail the use of constraints in the different stages
of the generation process.

The Cuypers system is designed to operate in the context of a client /server
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Figure 2. Levels of abstraction in the Cuypers generation engine

architecture, as depicted in Figure 1. The figure shows two different servers:
one dedicated server to deliver streaming media (such as audio and video
fragments) to the client, and another, off-the-shelf, Web server to deliver the
other data, including the generated multimedia presentation itself. The core of
the Cuypers system receives, from a multimedia information retrieval system,
a semantic description of the multimedia document as its input, and sends the
generated presentation to the server, for further delivery to the client (see 2
for more details).

The core generation engine, as depicted in Figure 2, is built around five

conceptual abstraction layers:

1. Semantic structure The semantic structure is a high-level semantic
description of the presentation. It completely abstracts from the design
and layout of the presentation. The designer provides a set of trans-
formation rules to transform this structure into a specification based on

communicative devices.



2. Communicative devices Communicative devices? are abstract con-

structs that specify how the information should be conveyed to the user.
They are device independent and can thus be used to convey similar pre-
sentations for different devices. For example, a communicative device
may ensure that a sequence of media items is presented in a particular
order. The layout that is chosen to achieve this goal will depend on the
capabilities of the target device, the preferences of the user, etc. This
layout is then specified using a set of qualitative constraints.

3. Qualitative constraints Qualitative constraints are used to specify
communicative devices at a high level, as described in section 3.3.

4. Quantitative constraints Quantitative constraints make the transfor-
mation from qualitative constraints to numeric finite-domain constraints.
At this level one can determine the exact position of the different media
items in the presentation and whether they will fit on the screen, do not
exceed a given time-limit, etc.

5. Final form presentation The last step is finalizing the presentation to a
format suitable for the player or browser on the target device. Examples
of such formats include XHTML, SVG and SMIL. Cuypers currently
focuses on generating SMIL!3.

In the remainder of this section, we describe the design of the two constraint
layers. For more details about the other layers see %12, As we discussed in
section 3, the use of both qualitative and quantitative constraints within a
system requires the translation of the qualitative constraints into quantitative
constraints. To provide a clear understanding of how this translation should
be done, we need to describe the domains that are involved in multimedia
generation, the data structures that are needed to process the associated con-
straints and, most importantly, the rules that are needed to reason with them.
These are detailed in the following.

4.1 Dimensions in Multimedia Generation

Multimedia presentations are built up from different media types which use
different presentation dimensions. Visual media, such as images, text and
video use the two common spatial x and y dimensions and also have a z
dimension, describing the layering order of (overlapping) items. While only
continuous media such as audio and video have an intrinsic temporal ¢ dimen-
sion, when included in a presentation, all media items are assigned a position
along the temporal axis. In addition to these spatio-temporal dimensions,



parts of the presentation can be connected by hyperlinks. Automatic link
generation is, however, beyond the scope of this paper.

The “traditional” x, y and t dimensions are described using both quan-
titative and qualitative constraints. For the quantitative constraints, we use
integer domains. As described in section 3, the qualitative constraints for the
temporal dimension make use of the 13 interval relations specified by Allen.
Each of the spatial £ and y dimensions is treated similarly to the temporal
dimension, so Allen’s interval relations are also used for the spatial dimen-
sions. Note that this “bounding box” approach limits the ability to model, for
example, the rotation of visual items. The z dimension could, in theory, also
be modeled qualitatively. There are, however, only three possible relations
(A in front of B, A behind B and A on the same level as B), and these map
directly onto the equivalent numerical constraints (A < B,B > A, A = B).
Therefore, we currently only use numerical constraints for the z dimension.

4.2 A Data-Structure for Qualitative Multimedia Constraints

To be able to describe a multimedia presentation by a set of high level qual-
itative constraints, and to be able to reason with these constraints, the con-
straints need to be organized into an adequate data-structure that provides
more information than just the constraints that apply between the media
items. For example, it is often convenient to be able to explicitly model the
hierarchical structure of a multimedia presentation. While this suggests the
use of a tree-based datastructure, lesson learned from earlier prototypes indi-
cate that this is too restrictive. For example, when modeling grid structures,
it is convenient to be able to group the same item both vertically and hor-
izontally. Because this is not possible in a strict tree, our data structure is
based on the notion of a fully connected graph.

label 1 .
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Figure 3. Graph data-structure for multimedia constraints.

In Figure 3, an example fragment of a presentation is displayed on the



left, with the associated graph structure on the right. Note that only a single
relation is displayed on the edges. The reverse relation and the relations
representing the other dimensions have been left out for clarity. Initially
all media items can have any relationship with each other. Constraints can
be explicitly set, in the example the rules associated with the communicative
device used have decided to group image 1 and label 1 together, to position this
group left of image 2, and to position label 1 above image 1. This information
can then be used to reduce the number of possibilities for the other edges in an
intelligent way. The reasoning rules required for this reduction are specified
using CHR. Once all reduction rules are applied and the system has not
detected any inconsistencies, it picks an arbitrary value for a variable from its
associated domain. The new binding of this variable and its value can trigger
reduction rules once again. If the constraint solver detects an inconsistency,
it backtracks over the available choices and picks another value, after which
the process of applying reduction rules repeats itself. Once an inconsistency
is found and there are no alternatives left, the set of constraints fails. This
triggers backtracking at the Prolog level, which might result in an alternative
set of constraints. As soon as the system succeeds in binding every variable to
a suitable value, these values are used to generate the associated multimedia
presentation.

To build the graph structure, the transformation rules deploy two primi-
tives: nodes and edges. In a later phase, nodes will also be used to represent
the quantitative aspects of the presentation. The number of nodes for each
media item depends on its type and the presentation dimensions involved. An
image has 6 nodes (x1,y1,%2,y2,t1,t2) and an audio fragment has 2 (¢1,t2).
A node can be represented in ECL’PS® as:

% Nodeld is a structure of the form ’Id:Dimension/Nr’ e.g. ’imgl:x/1’)
% Value is then a variable or atom associated with the x/1 domain of imgl
node (NodeId,Value) .

Note that all media items are assumed to have a unique ID. An edge relates
two IDs along a particular dimension, thus representing a qualitative con-
straint. The number of edges between two IDs is dependent on the number of
presentation dimensions they share. Between two images, there are six edges
(for the x,y,t dimensions and their inverses) while between an audio and im-
age there are only two (¢ with an inverse). An edge is represented in Cuypers

as:
% IdX are the Ids of the associated media items
% Dimension is the label of the edge x,y or t
% Value is a variable or an atom associated with the domain of Dimension
edge (IdA,IdB,Dimension,Value) .

To simplify the building of a consistent graph, a set of CHR rules specifies



the relationship between nodes and edges. Whenever an edge is asserted, the
system looks for the associated nodes. When these are not yet defined, the
system introduces them automatically, according to the associated CHR rules.
For example, for the temporal dimension a CHR rule relating temporal nodes
with edges may be specified as:

% Node introduction

edge (IdA,IdB,t, _Value) % Temporal

==>
node(IdA:t/1,VA1), % introduce start-node til
node(IdA:t/2,VA2). % introduce end-node t2

When the initial graph is built, typically the qualitative relationships of only
a few edges have been fully determined. The set of CHR rules that allow the
system to infer possible values for the remaining edges, will be defined below.

4.8 CHR Rules for Qualitative Multimedia Constraints

In order to reduce the domains of the variables in the remaining edges in
an intelligent way, we need specific rules which state how and when these
reductions should be invoked. These rules range from optimization rules to
rules that are needed for reasoning over spatio-temporal dimensions. In this
section we give an overview of the rules we currently use. Note that this
is not intended to provide an exhaustive list — new rules can be added as
necessary. As a first example, both application of the Prolog transformation
rules and application of the domain reduction rules might result in duplicate
edges. Accordingly, we need a rule that specifies that when two edges are
identical, one can be omitted:

% Equality
edge (IdA,IdB,Dimension,Value), edge(IdA,IdB,Dimension,Value)
<=> % simplification

edge (IdA,IdB,Dimension,Value).
Another rule is needed to specify that if two edges between the same two
nodes have the same dimension, then their values should be constrained to

the same® value:
% Unification
edge (IdA,IdB,Dimension,ValueA), edge(IdA,IdB,Dimension,ValueB)
==> % propagation
ValueA #= ValueB.
We also need to be able to deal with inverse relations. If there is an edge
between two nodes A and B with a certain dimension and a certain (known)

value for a relation, then there is also an edge between nodes B and A with

bNote the use of the hashmark to discriminate equality constraints (# =) from the usual
equality operator in Prolog (=).



the same dimension but with an inverse relation:

% Inverse

edge(IdA,IdB,Dimension,Value)

==> % propagation
ground (Value), % only when Value is known
inverse(Value,InverseValue) % and relation has inverse

edge(IdB,IdA,Dimension,InverseValue) .

While the rule above generates only correct inverse edges, it is not ap-
plicable in situations where the Prolog transformation rules or other CHR
rules have already specified edges in both directions. Therefore, we need a
rule that, for a known relation between A and B, constrains the value of the

inverse edge:
% Unification (of inverses)
edge (IdA, IdB, Dim, Valuel), edge(IdB, IdA, Dim, Value2)
==> % propagation
ground(Valuel), % only when Valuel is known
inverse(InverseOfValuel,Valuel) % and relation has inverse

|
Value2 #= InverseOfValuel.

Note that the ground predicate in the guard ensures that the rule only fires
when the value of the relation between A and B is known. When the value
of the relation in the opposite direction is not known, it will be constrained
to the correct inverse value. When it is known, and already has the correct
value, the rule will have no effect. Finally, when it is known and has not
the correct value, the constraint in the body of the rule can never be met,
and the application of the rule will cause the system to backtrack to find an
alternative for the edge that caused the inconsistency.

Further rules are needed to specify the transitive behavior of many of the
Allen relations. For example, if there is an edge between node A and node B
and there is an edge between node B and C with value ‘b’ (before) then there
is also an edge between A and C' with value ‘b’. This could be expressed in
CHR as:

% Transitivity of ‘b’ (naive version)

edge (IdA,IdB,Dimension,b), edge(IdB,IdC,Dimension,b)

==> % propagation
edge (IdA,IdC,Dimension,b).

As discussed in section 3, it is not practical to specify the transitive behavior
of all 13 x 13 combinations in this manner. Therefore, the actual rule used by
Cuypers defers the implementation of the transitivity rules to the predicate
tr, and rule generation tools of Apt and Monfroy have been used to define

the truth values of all possible combinations of variables of this predicate:
% Transitivity (dim x,y,t)
edge (A,B,Dimension,ValueAB), edge(B,C,Dimension,ValueBC)



Allen relation  Quantitative constraints

A before B X3 < XxE

A during B X{ > XxP X < xP

A overlaps B Xt < XxP, X3 > XE X3 < X5
A meets B X =XxB

A starts B Xt =XxP X3 —X{<xP-_xF
A finishes B Xt =X8 X -xP<xP-_XxE
A equals B X{=XP, xi=Xx5F

Figure 4. Allen’s relations expressed using quantitative constraints.

==> % propagation
A\=B, A\=C, B\=¢C % if A, B,C are different nodes
|
tr(ValueAB,ValueBC,ValueAC), % rule automatically generated

% by Apt et al.
edge(A,C, Dimension, ValueAC). Y add the deduced constraint

Using these CHR rules we can, on the basis of the edges explicitly defined by
the transformation rules, reduce the domains of the remaining edges. This
allows us to define higher level constraints. For example, we can define a
“meta-constraint” that specifies that if a label is positioned above an image,
then all other labels should also be placed consistently above their corre-
sponding images. However, a solved set of qualitative constraints in itself is
insufficient. Quantitative constraints are needed to check whether a certain
set of qualitative constraints does not violate some hard quantitative require-
ments such as the target platform’s screen size or the maximum duration of
the presentation. Below, we define a set of CHR rules that maps the qualita-
tive constraint graph to a set of quantitative constraints.

4.4  CHR Rules for Translating Qualitative to Quantitative Constraints

Most of the quantitative constraints can be generated by mapping the qualita-
tive Allen relations to numerical constraints'*. The qualitative Allen relations
can, for each of the three dimensions x,y, and ¢, be mapped to one or more
corresponding numeric constraints. Figure 4 defines this mapping for the
x dimension, using X; as the left coordinate and X5 as the right. Similar



mappings can be defined for the other dimensions.

We can express these mappings by means of CHR rules that translate all
qualitative (Allen) constraints into numeric constraints that can be solved by
ECL!PS® built-in libraries. For example, we can define the translation rules

for meet (m) in CHR as follows:
% translate qualitative to quantitative

edge (IdA,IdB,Dimension,m), % A meets B
node (IdA:Dimension/2,CoordinateA2), % A.coordinate2
node (IdB:Dimension/1,CoordinateB1) % B.coordinatel
==>

CoordinateA2 #= CoordinateBl1 % A2 equals B1

Similar rules are defined for the six other Allen relations. Note that it is not
necessary to specify these rules for the six inverse relations. For instance,
there is no need to translate an inverse m- edge to numeric values, because
for every edge with an m- value, the qualitative rules have already generated
the associated m edge in the other direction along with the same numeric
constraints.

More importantly, after every addition of a qualitative constraint, in the
form of an edge, to the constraint store, the system will apply as many CHR
rules as possible, both at the qualitative and quantitative levels. As soon
as an addition results in an inconsistent set of constraints, the addition fails
and forces the system to backtrack immediately and try a different layout.
Consequently, unnecessary generation of the remaining (usually large number
of) constraints can be avoided. For example, consider two 500 pixel images
and a screen that is less than 1000 pixels wide. Any qualitative constraint
that specifies that the images should appear next to each other horizontally,
will be immediately translated to numeric values and thus fail. This gives
the transformation rules early feedback to indicate that the chosen layout is
not suitable in the current situation and forces the system to choose another
layout.

In addition, the ability to backtrack over different solutions of a given set
of qualitative constraints proved to be particularly useful for semi-automated
authoring. This allows the designer to compare different potential solutions
that all satisfy the constraints generated by the designer’s style rules.

5 Conclusions and Future Work

Previous approaches®? that combined a rule-based with a constraint-based
paradigm have traditionally separated the two in a strictly sequential process.
This implied that a complete set of constraints had to be generated from the
transformation rules before being passed to the constraint solver. This paper



shows how constraint logic programming can be used to closely integrate the
rule and constraint-based paradigms. While our approach can be used to
generate template-like sets of constraints, it is also able to efficiently deal
with presentations for which it is impossible to generate transformation rules
that are guaranteed to generate a solvable set of constraints.

Note that while our approach allows a more efficient generate and test
cycle it does not solve the drawback noted in ® that relates to a lack of control
over backtracking behavior. In the current system, backtracking behavior is
the default behavior of the underlying Prolog engine of ECL?PS¢. This means
that the system will first try to backtrack over the lower, quantitative, levels
before trying alternative higher, qualitative, level solutions.

In addition, the current system presents the first presentation which sat-
isfies all constraints to the user. In most cases this is, from an author’s per-
spective, unlikely to be the best one. We are currently investigating methods
of choosing among the possible alternatives on the basis of some predefined
evaluation function that reflects the “quality” of the generated presentation.
What good quality measures for multimedia presentations are and how we
can formalize them are further points of research.
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